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Abstract

The unsteady turbulent flow around bodies at high Reynolds number is predicted by an anisotropic eddy-viscosity

model in the context of the Organised Eddy Simulation (OES). A tensorial eddy-viscosity concept is developed to

reinforce turbulent stress anisotropy, that is a crucial characteristic of non-equilibrium turbulence in the near-region.

The theoretical aspects of the modelling are investigated by means of a phase-averaged PIV in the flow around a

circular cylinder at Reynolds number 1:4� 105. A pronounced stress–strain misalignment is quantified in the near-wake

region of the detached flow, that is well captured by a tensorial eddy-viscosity concept. This is achieved by modelling

the turbulence stress anisotropy tensor by its projection onto the principal matrices of the strain-rate tensor. Additional

transport equations for the projection coefficients are derived from a second-order moment closure scheme. The

modification of the turbulence length scale yielded by OES is used in the Detached Eddy Simulation hybrid approach.

The detached turbulent flows around a NACA0012 airfoil (2-D) and a circular cylinder (3-D) are studied at Reynolds

numbers 105 and 1:4� 105, respectively. The results compared to experimental ones emphasise the predictive

capabilities of the OES approach concerning the flow physics capture for turbulent unsteady flows around bodies at

high Reynolds numbers.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The accurate prediction of the unsteady loads induced by the interaction of turbulent flows with solid walls at high

Reynolds number is a crucial issue in fluid–structure simulation. Since Direct Numerical Simulations of Navier–Stokes

equations are still limited to low Reynolds numbers, the most popular approaches consist in splitting the physical

variables into resolved and modelled parts and in simulating only mean quantities issued from an averaging or filtering

procedure. The Large Eddy Simulation (LES) approach is based on a spatial filtering and leads to a distinction between

resolved and modelled flow structures according to their size. Concerning wall flows, LES is still limited in the moderate

Reynolds number range (Davidson et al., 2003). As a consequence, statistical approaches, as Unsteady Reynolds

Averaged Navier–Stokes (URANS), are widespread and robust methodologies for the prediction of complex wall flows.

However, classical URANS approaches use the same length and time scales of turbulence as in equilibrium flows in the

sense of Kolmogorov’s statistical theory and are characterised by excessive turbulence production rates that often
e front matter r 2008 Elsevier Ltd. All rights reserved.
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attenuate and damp unsteady instability modes (Jin and Braza, 1994; Durbin and Pettersson Reif, 2001). The

benefits of URANS in near-regions and of LES in farther detached ones are associated in hybrid approaches.

Especially, the Detached Eddy Simulation [DES, Travin et al. (2000)] does not need specified interfaces that create

major defects in other hybrid approaches. DES attempts, as other approaches, to minimise excessive turbulence

production rates in non-equilibrium turbulence regions and therefore avoiding damping of vortex structures that

usually occurs by using classic URANS (Haase et al., 2006). However, standard DES often produces spurious

separation regions because of equilibrium assumptions for the turbulence scales in the URANS regions. This creates

high physical incoherences in matching the turbulence length scale with the LES regions (Haase et al., 2006; Peng and

Haase, 2008).

To improve these aspects concerning the statistical and hybrid approaches, the Organised Eddy Simulation (OES)

methodology can be considered (Bouhadji et al., 2002; Braza et al., 2006). OES distinguishes the structures to be

resolved from those to be modelled on the basis of their organised (resolved part) or chaotic character (modelled part).

The modelling of this part can be achieved by reconsidered URANS approach in respect of modified turbulence scales,

by means of an appropriate physical modelling of the turbulent stresses. This has been achieved by using Differential

Reynolds Stress transport Modelling (DRSM) to evaluate the eddy-diffusivity coefficient used in OES two-equation

modelling (Bourdet et al., 2007). Therefore, this approach takes the benefits from DRSM and avoids its difficulties,

mainly related to a numerically unstable character of the second-order closures and on their high computational cost.

This paper presents an improved modelling of the turbulent stresses in OES. Previous developments in OES had

adopted Boussinesq (1877) behaviour law. In the present study, a tensorial eddy-viscosity concept is developed, by

taking into account physical characteristics of a directional stress–strain misalignment. This approach is complementary

to the attempts of modifying turbulence constitutive laws by means of scalar eddy-viscosity and by the use of higher-

order tensors combining strain and vorticity tensors (Non-Linear Eddy-Viscosity Models, NLEVM, or Explicit

Algebraic Reynolds Stress Models, EARSM [Pope, 1975; Shih et al., 1993; Gatski and Speziale, 1993; Speziale and Xu,

1996, for instance]). By the present approach, the lack of universality due to evaluation of new constants for the higher-

order tensors in respect of the flow studied is avoided. The present paper is composed as follows. In Section 2, a physical

analysis of stress–strain relations is performed on the basis of a detailed high Reynolds PIV experiment concerning the

incompressible flow past a circular cylinder at Reynolds number 1:4� 105 (Perrin et al., 2007). In Section 3, a

methodology based on a directional eddy-viscosity concept is presented to capture stress–strain non-linearities yielding

a new turbulent stress constitutive law. Transport equations for the new state variables involved in this constitutive law

are derived. The predictive capabilities of this approach are examined in Section 4 by means of numerical simulation

around a NACA0012 airfoil at 20� of incidence and Reynolds number 105. The ability of OES approach to improve

DES is assessed by a numerical simulation of the incompressible 3-D flow past a circular cylinder compared to previous

experimental results.
2. Physical analysis of turbulent stress–strain relation in the near-region

The relation between turbulent stress and mean strain-rate tensors is investigated on the basis of a detailed PIV

experiment in the incompressible flow past a circular cylinder at high Reynolds number. The experiment has been

carried out in the wind tunnel S1 of IMFT in the context of DESIDER European program. A complete description

concerning the experimental setup and measurement techniques have been reported in Perrin et al. (2007). Only the

main characteristics of the configuration are recalled here. The channel has a 670� 670mm2 cross-section and the

cylinder of diameter D ¼ 140mm spans the width of the channel without endplates. It has a diameter D of 140mm,

giving an aspect ratio L=D ¼ 4:8 and a high blockage coefficient D=H ¼ 0:208, where L and H are channel width and

height, respectively. The upstream velocity at the centre of the channel is 15m/s. The Reynolds number based on the

upstream velocity and on the cylinder diameter is 1:4� 105. The free-stream turbulence intensity, measured by hot wire

in the inlet is 1:5%. Three-component PIV has been performed (Perrin et al., 2007). The test-section plan has been

considered at half distance spanwise and located in the near-wake region. The measurement domain is x1=D 2 ½0:6; 2:28�
and x2=D 2 ½�0:52; 0:7�. Phase-averaged decomposition is performed, due to the quite pronounced periodic character of

the flow in respect of von Kármán vortex shedding. The Linear Stochastic Estimation has been employed to phase the

three-component PIV snapshots (Perrin et al., 2007). In the following, all experimental quantities are phase-averaged

and non-dimensional. The phase-average decomposition is expressed as follows: U inst
i ¼ hU

inst
i i þ ui, where U inst

i are

instantaneous velocity components, h�i denotes phase-averaging operator and ui are velocity fluctuations; huiuji are the

turbulent stresses. This experimental database enables a precise monitoring of phase-averaged and turbulent fields as

Fig. 1 illustrates it. Therefore, this study can be used in the context of OES, as described in Section 3. Phase-averaged

normal and shear turbulent stresses and turbulent kinetic energy (k ¼ 1
2
huauai) are represented at a given phase angle
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Fig. 1. Iso-contours of phase-averaged (a) turbulent kinetic energy, (b) normal hu1u1i, (c) shear hu1u2i turbulent stresses at phase angle

j ¼ 50�. In (a) velocity streamlines are superimposed.

Fig. 2. Iso-contours of the angle between the first principal directions of �a and S at three given phase angles: (a) j ¼ 50�,

(b) j ¼ 140� and (c) j ¼ 230�. Iso-lines of Q criterion (bold lines, dashed lines for Qo0).
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(j ¼ 50�). Greek subscripts are used to specify implicit summations. A high level of turbulent kinetic energy is shown in

the coherent structure regions as well as in high shear flow ones (Fig. 1(a)). In vortex advection region, the highest

values of the normal stresses huiuii are located near the centre of the coherent structures (Fig. 1(b)) whereas high values

of turbulent shear stress are reached near saddle points (Fig. 1(c)). In the very near-wake region, high values of shear

and normal stresses are observed in the shear layers, as expected.

Boussinesq law assumes a linear relation between turbulent stress and mean strain-rate tensors. This can be written as

follows, under incompressibility assumption:

�
huiuji

k
þ

2

3
dij ¼ �aij ¼ 2

nt

k
Sij with nt ¼

Cmk2

e
, (1)

where dij is Kronecker symbol. a denotes turbulent stress anisotropy tensor which is the traceless and non-dimensional

form of turbulent stresses. S is the mean strain-rate tensor, defined by Sij ¼
1
2 ðqUi=qxj þ qUj=qxiÞ, where Ui ¼ hU

inst
i i.

The scalar eddy-viscosity nt is expressed by means of the turbulence length and time scales. e is the turbulent kinetic

energy dissipation rate and Cm denotes an eddy-diffusivity coefficient. a and S being real symmetrical tensors, their

eigenvectors form orthogonal basis. These are classified according to the corresponding eigenvalue decreasing

magnitudes, la
i and lS

i denoting �a and S ith eigenvalues, respectively. In the following, va
i and vS

i are ith eigenvectors

of �a and S. The previously described phase-averaged PIV enables to access the complete anisotropy tensor but only

strain tensor components which do not involve spatial gradients in x3 direction. In the following, two-dimensionality

assumption is made, taking into account the experimental setup symmetry. The angle between the first principal

directions of the strain and anisotropy tensors is quantified at given phase angles (Fig. 2). The main coherent

vortex regions are illustrated in Fig. 2 by a positive value of Q criterion, Q ¼ 1
2
ððqUa=qxaÞ

2
� ðqUa=qxbÞðqUb=qxaÞÞ

(Hunt et al., 1988).

As noticed in a preliminary study (Bourguet et al., 2007), a strong misalignment is observed in many regions. This

emphasises the limitations of the linear EVM assuming that the principal directions of �a and S remain collinear. From

a general point of view, strong non-collinearities appear near the vortex centre (x1=D ¼ 1:1, x2=D ¼ 0:15), (x1=D ¼ 1:5,
x2=D ¼ 0:05) and (x1=D ¼ 1:1, x2=D ¼ 0) in Fig. 2(a), (b) and (c), respectively, as well as in high shear flow regions like

in the upper shear layer in Fig. 2(c). However, va
1 and vS

1 are also strongly misaligned in the near-wake region, close to

x2=D ¼ 0. The best alignment is reached in farther free-shear flow regions and near saddle points located by negative
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values of Q criterion, (x1=D ¼ 1:3, x2=D ¼ 0:5) in Fig. 2(b), for instance. The analysis of high misalignment zones

allows locating precisely the validity regions of the linear isotropic law. In the perspective of an improvement of a

turbulent stress constitutive relation, these structural properties have to be captured.
3. Anisotropic OES modelling

The present study aims at providing an efficient and robust turbulence modelling methodology for the prediction of

non-equilibrium turbulent flows around bodies at high Reynolds number (order of 106 or higher). It is recalled that a

pure LES approach would be prohibitive in this Reynolds number range because it would involve very fine grids in the

near-region. The statistical turbulence modelling offers robustness of the simulations in this region at high Reynolds

numbers but it has proven a strong dissipative character that tends to damp crucial instabilities occurring in turbulent

flows around bodies, as for example low frequency modes as von Kármán instability, buffet or flutter phenomenon. The

OES approach offers an alternative that combines robustness and capture of the above physical phenomena. This

approach consists in splitting the energy spectrum in a first part that regroups the organised flow structures (resolved

part) and a second part that includes the chaotic processes due to the random turbulence (to be modelled). In the time-

domain, the spectrum splitting leads to phase-averaged Navier–Stokes equations (Jin and Braza, 1994). A schematic

illustration of the OES approach is presented in Fig. 3.

The turbulence spectrum to be modelled is extended from low to high wavenumber range and statistical turbulence

modelling considerations can be adopted inducing robustness properties. However, the use of standard URANS

modelling is not sufficient in this case. In non-equilibrium turbulence, the inequality between turbulence production and

dissipation rate modifies drastically the shape and slope of the turbulence spectrum in the inertial range (Fig. 3),

comparing to the equilibrium turbulence, according to Kolmogorov’s cascade (slope equals � 5
3
). This modification has

been quantified by the experimental study mentioned in Section 2 (Braza et al., 2006). Therefore, the turbulence scales

used in standard URANS modelling have to be reconsidered in OES, to capture the effects due to the non-linear

interaction between the coherent structures and the random turbulence. In the context of the OES approach, a

modification of the turbulence scales in two-equation models was achieved on the basis of the second-order moment

closure (Launder et al., 1975; Bourdet et al., 2007). By using the Boussinesq law (1) as well as the dissipation rate and

the turbulent stresses evaluated by DRSM, a reconsidered eddy-diffusivity coefficient was derived. It was shown that

the Cm values were lower (order of 0:02) than the equilibrium turbulence value (Cm ¼ 0:09) in two-equation modelling.

Furthermore, the turbulence damping near the wall needed also to be revisited because of the different energy

distribution between coherent and random processes in non-equilibrium near-wall regions. A damping law with a less

abrupt gradient than in equilibrium turbulence was suggested, f m ¼ 1� expð�0:0002yþ � 0:000065yþ2Þ (Jin and Braza,

1994); yþ ¼ ynUt=n is a non-dimensional wall distance, yn is the distance perpendicular to the wall and U t the friction

velocity. The efficiency of the OES approach in 2-D and 3-D has been proven in a number of strongly detached high

Reynolds number flows, especially around wings (Hoarau et al., 2006), as well as in the context of DES (El Akoury

et al., 2007), as described in Section 4. In the present study, special attention is paid to the reinforcement of the

turbulent stress anisotropy in the near-region by reconsidering the Boussinesq constitutive law.

3.1. Modelling of the turbulent stress anisotropy tensor

The previous analysis (Section 2) concerning stress–strain non-linearity illustrates the need for an anisotropic

constitutive law. To include these structural properties, each directional contribution of the strain tensor is considered
Fig. 3. Sketch of the energy spectrum splitting in OES: (a) energy spectrum, (b) coherent part (resolved) and (c) random, chaotic part

(modelled). kc denotes coherent process wavenumber.
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separately. A projection of the turbulence anisotropy tensor is performed onto the strain-rate principal matrices. This

projection, â, is investigated in the generic linear form:

âij ¼ �CV aVa
ij with CV i ¼ �aabVi

ab and Vi
abV

j
ab ¼ dij . (2)

Vi are 3� 3 symmetrical tensors. CV i denotes the projection of �a onto Vi. Under Boussinesq hypothesis, three tensors

are considered (Vi ¼ vS
i v

S
i

T
, where �T denotes the transposition). The corresponding projection coefficients are

approximated by CV i � 2ntl
S
i =k. In the present study, the same basis tensors Vi are retained. These matrices of rank 1

are called S principal matrices in the following. Contrary to linear EVM, projection coefficients CV i are no more

modelled but assumed to be predicted exactly as new state variables by DRSM transport equations. The methodology

suggested here aims at capturing directional properties of stress–strain misalignments leading to an anisotropic

constitutive law. CV i projection coefficients allow identification of directional misalignments (Fig. 4). These properties

are not captured by the previous approaches.

Expression (2) with Vi ¼ vS
i v

S
i

T
ensures that the modelling of the anisotropy tensor is symmetrical and traceless since

CV a ¼ 0. Moreover, the turbulent kinetic energy production term has the same form as in DRSM:

Pk ¼ �kâabSab ¼ �kaabSab. (3)

From expression (3), positive or even negative turbulent kinetic energy production regions are expected to be faithfully

predicted, that is not the case when using linear EVM [e.g. Carpy and Manceau (2006)]. As a consequence of the

projection subspace chosen here, the eigenvectors of â are also eigenvectors of the strain tensor. The contribution of

each principal matrix of the strain tensor is modulated according to the projection coefficient in each space direction. As

shown in Fig. 5, the values of CV i are reduced in misalignment regions that reduces the influence of Vi, whereas they

remain maximum when the principal directions are aligned.

The projection coefficients are the eigenvalues of â. Therefore, no proportionality relation is assumed between stress

and strain tensors as in linear EVM. This means that the sorting of â and S eigenvectors may be different. Other basis

tensors can be considered, especially those issued from NLEVM. The principal matrices of the strain tensor are retained

here because these allow deriving transport equations for CV i coefficients as described in Appendix A.
Fig. 4. Two cases of misalignment between turbulent stress anisotropy and mean strain-rate tensor eigenbasis.
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Fig. 5. Iso-contours of the first projection coefficient CV 1 at two given phase angles, (a) j ¼ 50� and (b) j ¼ 140�. �a (dashed) and

S (solid) first principal directions are superimposed to locate high misalignment regions. Iso-contour of Q criterion Q ¼ 1 is

represented by dark grey lines.
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3.2. Tensorial eddy-viscosity concept and constitutive law

The suggested modelling (2) for the turbulent stress anisotropy tensor can be expressed as an eddy-viscosity model by

means of a generalisation of the scalar eddy-viscosity concept towards a tensorial definition mtt:

ðnttÞij ¼ ðntd ÞaVa
ij with ðntd Þi ¼

CV i

2lS
i

k; (4)

ðntd Þi is a directional eddy-viscosity vector. Furthermore, the following definition of an anisotropic eddy-diffusivity

coefficient can be suggested by an extension of the scalar Cm definition, Cmi ¼ CV i=ð2ZiÞ. The quantities Zi ¼ klS
i =e can

be regarded as directional expressions of Z ¼ kkSk=e that is the ratio of turbulent and mean flow time scales which

emphasises the non-equilibrium turbulence regions (Speziale and Xu, 1996). The linear EVM behaviour law can be

generalised as follows:

�huiuji þ
2
3
kdij ¼ 2SiaðnttÞaj ¼ 2ðntd ÞaSa

ij with Sm
ij ¼ lS

mVm
ij . (5)

This anisotropic constitutive law involves the elements of a spectral decomposition applied to the mean strain-rate

tensor, whose respective weights are determined by ðntd Þi. Expression (5) leads to the following generalisation of the

averaged Navier–Stokes momentum equations:

DUi

Dt
¼

q
qxa

ðndab þ ðnttÞabÞ
qUi

qxb
þ

qUb

qxi

� �
�
2

3
kdia

� �
�

1

r
qP

qxi

, (6)

where r, P and n are fluid density, pressure and kinematic viscosity, respectively. The tensorial eddy-viscosity enables a

selective reduction of the influence of one (or more) elements of the strain-rate tensor with respect to the corresponding

physical alignment (or misalignment) between the associated principal directions. Moreover, if a perfect alignment is

observed in a region of equilibrium turbulence (isotropic strain), the tensorial expression leads to a classical Boussinesq-

like scalar model. A realisability condition of the present constitutive law can be established. The normal stresses have

to remain positive, for i ¼ 1; 2; 3, huiuiiX0. This leads to the following relation: CV aVa
iip

2
3
. A sufficient condition to

ensure the model realisability is thus CV ip 2
3
, for i ¼ 1; 2; 3.

A comparison between normal and shear stress anisotropy components evaluated from the PIV experiment and from

modelling via (5) and measured strain tensor is presented in Fig. 6. The modelled quantities present a good agreement
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Fig. 6. Comparison between turbulent ((a) and (c)) normal and ((b) and (d)) shear stress anisotropy obtained directly from the

PIV experiment ((a) and (b)), and those evaluated via expression (2) ((c) and (d)) at phase angle j ¼ 50�.
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with the experiment for both normal and shear stresses, despite slight differences in shear flow regions downstream of

the separation, where the experimental uncertainties are increased. This is achieved by examining the complete phase-

averaged fields at given phase angles. In Appendices A and B, a closure scheme including transport equations for the

prediction of CV i coefficients is presented.
4. Numerical simulation of strongly detached flows around bodies

The present model has been implemented in the Navier–Stokes Multi-Block (NSMB) code. The NSMB solver is a

numerical software of NSMB consortium solving the finite volume Navier–Stokes equations (Vos et al., 1998). Various

levels of numerical schemes and turbulence modelling closures, including DES, are implemented in NSMB. In the

present study, only low Mach number flows (Mao0:2) that can be regarded as incompressible are considered. In the

following simulations, the space scheme is a second-order central scheme. The time scheme is a second-order backward

dual time stepping scheme with constant CFL parameters and varying physical time-step (Dt � 5� 10�3 s). Solid-wall

boundary conditions are imposed on the body surfaces as well as on channel walls in the cylinder test-case.

Characteristic variable conditions with extrapolation in time are used on the far-field frontiers and Dirichlet conditions

at the inlet. The numerical over-cost induced by the computation of the strain tensor eigen-elements at each

spatial point and each timestep has been quantified in the following 2-D case. This represents approximately 15–20%

of the total computation time comparing to a standard linear two-equation model. Two strongly detached flows

are examined.

4.1. Numerical simulation of the turbulent flow around a NACA0012 airfoil at high incidence and Reynolds number 105

The low subsonic flow past a NACA0012 airfoil at 20� of incidence and upstream Mach number 0.18 is

simulated by the present turbulence modelling. The results are compared with experiment (Berton et al., 2002) and other

turbulence models. The Reynolds number based on the chord length and the free-stream velocity is 105. The

computational grid is a C type mesh of 256� 81 nodes. The flow develops a von Kármán instability and a strong vortex

detachment from the leading edge. In Fig. 7, instantaneous turbulent quantities are represented. Fig. 7(a) shows

the iso-contours of the turbulent kinetic energy superimposed to the streamlines. The turbulent kinetic energy has its

maximum values in the shear layers downstream of the separation. It can be noticed that there is no over-production

of this quantity upstream of the body as is the case in most eddy-viscosity models, with a consequent over-prediction

of drag coefficient. This is achieved by an inherent local reduction of the eddy-viscosity by means of the present

modelling (Fig. 7(b)). In Fig. 7(b) the directional eddy-viscosity has not been multiplied by the damping function f m
(cf. Appendix B).

An efficient prediction of the time-averaged aerodynamic coefficients is shown by the comparison with the

experiment (Table 1). This is achieved by a physically correct prediction of the turbulent kinetic energy, especially near

the separation point. A number of simulations have been carried out with URANS models [k–e Chien (Chien, 1982),

k–o SST (Menter, 1993)] as well as with the OES k–e scheme in 2-D and 3-D, using linear eddy-viscosity modelling.

Concerning URANS, both lift (CL) and drag (CD) coefficients are over-predicted by 2-D simulations. Concerning

isotropic OES, the 3-D simulation shows an improvement. The anisotropic OES presents a good agreement with

experimental data. Relative errors are o2:5% for the lift coefficient and o2% for the drag coefficient. Fig. 8 presents

the prediction of the velocity in the recirculation region on the upper side of the airfoil by the present OES approach.

A significant agreement with the experiment is achieved in this non-equilibrium region. These results indicate the ability

of the present approach to efficiently predict strongly detached turbulent flows.
:5.0E-06:0.02 0.05 0.07 0.09 0.12 0.14 0.16 0.18 0.21 0.23 0.25 0.28 0.30 3.3E-04 6.6E-04 9.8E-04 1.3E-03 1.6E-03

Fig. 7. Iso-contours of (a) turbulent kinetic energy and streamlines and of (b) the eddy-viscosity ðntd Þ1. In (b), iso-lines of Q criterion

are superimposed (Q ¼ f�6;�2; 2; 6g, negative values are denoted by dashed lines).
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Table 1

Comparison between time-averaged aerodynamic coefficients issued from experiments (Berton et al., 2002) and numerical simulations

based on first-order closure schemes

Experiment k–e Chien k–o SST Iso. OES k–e 2-D Iso. OES k–e 3-D AOES k–e (present)

CD 0.32 0.33 0.365 0.36 0.33 0.325

CL 0.75 0.80 0.87 0.86 0.70 0.77

0 0.5 1

0.1

0.2

0.3

0.4

0 0.2 0.4

0.1

0.2

0.3

0.4

Fig. 8. Comparison between experimental (Berton et al., 2002) and numerical time-averaged velocity profiles (a) U1 and (b) U2 at half

chord-length distance (x1=C ¼ 0:508) on the upper side of a NACA0012 airfoil at 20� of incidence and Re ¼ 105.
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4.2. Simulation of the flow around the ‘‘IMFT’s circular cylinder’’, at Reynolds number 1:4� 105

The simulation of the circular cylinder flow in a confined environment (see blockage and aspect ratios in Section 2) is

performed by using the OES approach in the context of the DES (Travin et al., 2000). According to this hybrid

approach, statistical turbulence modelling is used in the near region, coupled with an LES modelling in the detached

flow region. This is achieved by the same system of URANS equations by choosing the turbulence length scale in each

elementary fluid volume of the computational grid, according to the relation: lDES ¼ minðlRANS;CDESDÞ. This

turbulence length scale is employed in the dissipation term of the turbulent kinetic energy transport equation and has as

main result the increase of the dissipation rate with a consequent decrease of the turbulence eddy-viscosity. D is the

largest dimension of each elementary fluid volume cell considered. CDES is a constant of the model, evaluated by means

of homogeneous isotropic turbulence. However, in the standard DES approach, spurious separations may occur, even

in equilibrium turbulence regions (Haase et al., 2006). This inconvenient occurs because of a physical incoherence

between the RANS and the LES regions, due to the fact that in standard DES, equilibrium turbulence RANS

approaches are used. In the present paper, lRANS turbulence length scale can be derived by the OES approach,

lDES ¼ minðlOES;CDESDÞ with lOES ¼ k1=2=ðCmoÞ in case of two-equation k2o (Wilcox, 1988) modelling, with

CDES ¼ 0:78. The OES k2o two-equation model is used with Boussinesq hypothesis (isotropic OES) to evaluate the

turbulence length scale in the DES/OES approach (El Akoury et al., 2007). Therefore, the present paper aims at

improving the statistical part of DES.

The computational flow domain is the same as for the experimental study presented in Section 2, to allow a rigorous

comparison with the measurements. The 34-block mesh is of a reasonable size (2:4� 106 nodes) compared to the grid

that would be necessary for a full LES simulation. The results from the DES/OES approach are thus compared to the

experimental data as well as to results issued from a standard DES coupled with k–o SST model (Menter, 1993),

reported by Revell et al. (2008). Because of the fact that the present flow enters the critical regime (Braza et al., 2006),

the transition point is imposed at its averaged position, at the separation point. The instantaneous field of the transverse

vorticity shown in Fig. 9(a) illustrates the strong 3-D character of the von Kármán mode, interspersed by a multitude of

resolved smaller 3-D structures. The dimensionless frequency (Strouhal number, St¼ fD=U1) of the simulation is

found 0.2, after FFT post-processing of the numerical results. This value is in good agreement with the experimental

one (0.21). Owing to the physical reduction of the turbulence diffusion according to the OES approach, secondary

instability modes of smaller wavelengths than the von Kármán one are well captured in the transverse direction.

Furthermore, the shear layer instability associated with Kelvin–Helmholtz vortices clearly appears in the separated

shear layers on each side of the cylinder, as shown in Fig. 9(b). It is noticeable that the majority of current modelling
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Fig. 9. Simulation of the 3-D flow around the ‘‘IMFT’s circular cylinder’’: instantaneous (a) iso-surfaces of the transverse vorticity o3

and (b) iso-contours of Q criterion at half-spanwise distance allowing a precise identification of Kelvin–Helmholtz instability.
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Fig. 10. Comparison between (a) the experimental and numerical time-averaged wall pressure coefficient, (b) the time-averaged

longitudinal velocity fields issued form PIV and from DES/OES simulation.
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approaches damp this kind of structures in the present high Reynolds number range. By tracking the Kelvin–Helmholtz

vortices in the time domain, the shear layer frequency is evaluated, f SL ¼ 5:2. The ratio between this frequency and the

Strouhal number of the von Kármán mode is therefore f SL=St ¼ 26.

Time-averaged quantities are shown in Fig. 10. The wall pressure coefficient simulated by means of the DES/OES

method is close to the experimental one (Fig. 10(a)). In particular, the over-prediction of the low-pressure

region upstream of the detachment (y � 72�) is reduced compared to DES k–o SST approach and the detached

region is better captured. A comparison between the mean longitudinal velocity field issued from the experiment

and from the DES/OES computation is presented in Fig. 10(b). A good agreement is reached. Moreover,

a reliable prediction of the time-averaged drag coefficient is achieved by the DES/OES approach, CD ¼ 1:43
(exp. CD ¼ 1:44).
Therefore, the present study shows that the use of OES in the statistical part of DES allows an improved prediction of

strongly detached turbulent flows around bodies at high Reynolds number. This is achieved owing to a better coherence

between the non-equilibrium RANS turbulence length scale and the LES length scale in the virtual interface regions

between URANS and LES, comparing to standard DES approaches that use equilibrium turbulence RANS length

scale. The results issued from the modification of DES in the sense of the OES approach are promising, especially in the

perspective of an integration of the anisotropic OES modelling into hybrid methods.
5. Conclusion

In the present study, an anisotropic Organised Eddy Simulation (OES) turbulence modelling has been developed,

based on a tensorial eddy-viscosity concept, for the prediction of highly detached unsteady flows around bodies in
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the Reynolds number range 105–106. The non-equilibrium turbulence effects, especially stress–strain directional

misalignments, have been taken into account in a first-order constitutive law founded on a tensorial eddy-

viscosity. Three additional transport equations for the stress–strain projection coefficients involved in this law has

been derived from the Speziale, Sarkar and Gatski second-order moment closure. The new transport equations are

coupled with a two-equation model in which the anisotropic eddy-viscosity is used. The present modelling is

proven efficient to simulate the 2-D detached flow around a NACA0012 at Reynolds number 105 with a good

agreement with experiments. Furthermore, the OES approach has been successfully used in the URANS part

of the hybrid Detached Eddy Simulation (DES), by adopting Boussinesq approximation as a first step. The 3-D

DES/OES simulation of the flow around a circular cylinder in high blockage and aspect ratios (the ‘‘IMFT’s

circular cylinder’’ test case), at Reynolds number 1:4� 105 emphasises the efficiency of the OES approach within

DES for highly detached flows. The present modelling provides accurately the flow physics interaction with

the solid wall, related to different classes of coherent structures in the near region and especially to the von Kármán and

to the Kelvin–Helmholtz instability modes downstream of the separation, in the high Reynolds number range.

Moreover, this is achieved by using reasonable grid sizes, an important issue for the design in fluid–structure

interaction.
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Appendix A. Transport equations for the stress–strain projection coefficients

From the SSG DRSM (Speziale et al., 1991), three transport equations are derived for the CV i coefficients. In a

general form, the DRSM can be expressed as follows:

Dhuiuji

Dt
¼ Pij þPij � eij þDij . (7)

The production term Pij is

Pij ¼ �k
4

3
Sij þ aiaSja þ ajaSia þ aiaOja þ ajaOia

� �
with Oij ¼

1

2

qUi

qxj

�
qUj

qxi

� �
. (8)

The tensorial dissipation is approximated by the isotropic expression eij ¼
2
3
edij . The diffusion term Dij contains viscous

diffusion tensor Dn
ij and turbulent diffusion tensor Dt

ij defined as follows:

Dn
ij ¼

q
qxa

n
qhuiuji

qxa

� �
and Dt

ij ¼
q
qxa
ð�huiujuaiÞ. (9)

Dn
ij is computed exactly and Dt

ij is modelled by Daly and Harlow (1970) extended gradient model. The pressure-strain

term is modelled according to Speziale et al. (1991):

Pij ¼ � ðc1eþ c%

1 PkÞaij þ c2eðaiaaaj �
1
3
dijIIaÞ þ ðc3 � c%

3 II1=2a ÞkSij þ c4kðaiaSja þ aajSia �
2
3
abgSbgdijÞ

þ c5kðaiaOja þ ajaOiaÞ with IIa ¼ aabaab. (10)

The constant values are given in Table 2.
Table 2

Values of the constants in Speziale, Sarkar and Gatski DRSM (Speziale et al., 1991)

c1 c%

1 c2 c3 c%

3 c4 c5

1.7 0.90 1.05 0.8 0.65 0.625 0.2
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The DRSM has been considered in its original version. The present approach can be regarded as a generalisation of

the Cas model (Revell et al., 2006) that uses a global correlation rate between stress and strain tensors in the constitutive

law. The derivative of the turbulent stress anisotropy tensor can be written as follows:

Daij

Dt
¼

1

k
Pij þPij � aijðPk � eÞ �

2

3
Pkdij

� �
þDa

ij ; (11)

Pk is the turbulent kinetic energy production defined in expression (3). The global diffusion term Da
ij includes both

DRSM and turbulent kinetic energy diffusion terms. The transport equations for CV i are

DCV i

Dt
¼ �

Daab

Dt
Vi

ab � aab
DVi

ab

Dt

¼
4

3
þ c%

3 II1=2a � c3

� �
Vi

abSab þ ð2� 2c4ÞV
i
abaagSbg �

c2e
k

Vi
abaagagb

þ ð2� 2c5ÞV
i
abaagObg þ ð1� c1Þ

e
k

CV i þ ð1þ c%

1 ÞCV iaabSab þ
c2IIae
3k

þ
2ðc4 � 1Þ

3
aabSab � aab

DVi
ab

Dt
þDCV i . (12)

The diffusion term DCV i combines viscous and turbulent diffusion contributions and is approximated by

DCV i ¼
q
qxa

ndab þ
ðnttÞab

sCV i

� �
qCV i

qxb

� �
; (13)

sCV i
coefficients are set to the value of one. Moreover the second term issued from the derivation of CV i, vanishes if the

anisotropy tensor is replaced by its approximation, â: �âabDVi
ab=Dt ¼ 0.
Appendix B. Summary of the OES anisotropic first-order model

Three transport equations have been derived from DRSM to close the anisotropic constitutive law defined by

expression (5). These have been developed to be coupled with standard two-equation models since k and e appear

explicitly in the r.h.s. of Eq. (12). The corresponding anisotropic first-order closure scheme thus involves five equations

in addition to the three momentum equations (6) in the general 3-D incompressible case: two transport equations for k

and e and three for CV i. The scalar eddy-viscosity is replaced by the tensorial one (4) in the whole system. The OES

turbulence damping function is used (Table 3). The anisotropic OES k–e scheme thus consists in solving Eqs. (4), (5)

and (12) jointly to the two following:

Dk

Dt
¼

q
qxa

ndab þ
ðnttÞab

sk

� �
qk

qxb

� �
þ Pk � e�

2nk
y2n

, (14)

De
Dt
¼

q
qxa

ndab þ
ðnttÞab

se

� �
qe
qxb

� �
þ ce1 f 1

e
k

Pk � ce2 f 2

e2

k
�
2ne
y2

n

expð�0:5yþÞ. (15)

Damping functions and constants are given in Table 3.

In the 2-D case, only three equations are needed for turbulence modelling since CV 2 ¼ �CV 1.
Table 3

Damping functions and constant parameters of the present OES anisotropic model

f m f 1 f 2 ce1 ce1 sk se

1� expð�0:0002yþ � 0:000065yþ2Þ 1
1�0:22 exp �

k2=ðenÞ2

36

� �
1.44 1.92 1 1.3
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